Depth Trainability Generalization

Trainability depends on model choices

- Neural network architecture
- Optimizer
- Initialization
- Hyperparameter choices

• Why residual connections make networks more trainable?

Smoothening the loss surface

- Adding skip connections makes the loss surface less rough
- Gradients more representative of the direction to good local minima
- Use visualizations with a grain of salt: dramatic dimensionality reduction!

The effect of depth

- Deeper architectures have more uneven, chaotic surfaces and many minima
- Removing skip connections fragments and elongates the loss surface
- Fragmentation requires good initialization
- Flatter minima accompanied by lower test errors

Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.

The effect of depth in wider architectures

- Similar conclusions when increasing width
- Width makes the loss surface even smoother and flatter

Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom). The label k=2 means twice as many filters per layer. Test error is reported below each figure.

The effect of the optimizer

- Weight decay encourages optimization trajectory perpendicular to isocurves
- Turning off weight decay, the optimizer often goes in parallel with isocurves

Figure 9: Projected learning trajectories use normalized PCA directions for VGG-9. The left plot in each subfigure uses batch size 128, and the right one uses batch size 8192.

Residual connections "stabilize" gradients

The gradient with skip connection becomes

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial h} \cdot \frac{\partial h}{\partial x} = \frac{\partial \mathcal{L}}{\partial h} \cdot \left(\frac{\partial F}{\partial x} + \frac{\partial x}{\partial x}\right) = \frac{\partial \mathcal{L}}{\partial h} \cdot \frac{\partial F}{\partial x} + \frac{\partial \mathcal{L}}{\partial h}$$

- The previous layer gradient is <u>carried to</u> the next module untouched
- Seen otherwise, the loss surface corresponds to stronger gradients, i.e., smoother

