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(a) without skip connections (b) with skip connections

Li, Xu, Taylor, Studer, Goldstein, Visualizing the Loss Landscape of Neural Nets, NeurIPS, 2018



Trainability depends on model choices

o Neural network architecture
o Optimizer
o Initialization

o Hyperparameter choices

o Why residual connections make networks more trainable?
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Smoothening the loss surface

o Adding skip connections makes the loss surface less rough
o Gradients more representative of the direction to good local minima

o Use visualizations with a grain of salt: dramatic dimensionality reduction!

VGG-56 VGG-110

Renset-56 Densenet-121
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The etfect of depth

o Deeper architectures have more uneven, chaotic surfaces and many minima
o Removing skip connections fragments and elongates the loss surface

o Fragmentation requires good initialization

o Flatter minima accompamed by lower test errors
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Figure 5: 2D visualization of the loss surface of ResNet and ResNet-noshort with different depth.
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The effect of depth in wider architectures

o Similar conclusions when increasing width

o Width makes the loss surface even smoother and flatter

O h=11331%  OF=21026% (@ k=4960% () k=8870%

Figure 6: Wide-ResNet-56 on CIFAR-10 both with shortcut connections (top) and without (bottom).
The label £ = 2 means twice as many filters per layer. Test error is reported below each figure.
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The effect of the optimizer

o Weight decay encourages optimization trajectory perpendicular to isocurves

o Turning off weight decay, the opt1m1zer often goes in parallel with isocurves
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Figure 9: Projected learning trajectories use normalized PCA directions for VGG-9. The left plot in
each subfigure uses batch size 128, and the right one uses batch size 8192.
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Residual connections “stabilize” gradients

o The gradient with skip connection becomes
0L 0L oh OL <6F 0x> oL OF 0L

9x 0h 9x 0oh \ox ‘ax) " on 9x T on

o The previous layer gradient is carried to the next module untouched

o Seen otherwise, the loss surface corresponds to stronger gradients, i.e., smoother
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